
Web based database backup with JDBC

Authors:
Tymoteusz Gedliczka
Marcin Grabda
Tomasz Gurgul
Wiktor Kołodziej
Jakub Suder



1 Team

Wiktor Kołodziej team leader, public relations, build administrator

Tomasz Gurgul scribe, code developer, tester

Marcin Grabda code developer, GUI developer, build administrator

Jakub Suder code developer, tester

Tymoteusz Gedliczka code developer, tester

2 Theme of the project

Web based database backup with jdbc.

3 Description of the problem

Let us imagine a computer system that makes use of a database (it may also use different types of
databases, for example MySQL, Postgresql, MSSQL). Difficulties appear when there comes a need to
create a backup of data and the only technology you can use is JDBC (e.g. we would like to integrate
this functionality with an existing, more complex system).There are many applications providing
backup facilities, however none of them fulfils our goals (different database types support, use of
JDBC).

1



4 Proposed solution

We have decided to create a system, that would enable its administrator to:

• log on to the system through www interface

The administrative panel that enables you to create a back-up copy of a database will be avail-
able only after the authentication. In order to gain access to this panel user will have to enter
login and password. When the process of authorisation succeeds you will be allowed to perform
administrative activities. SSL tunneling will be used to provide safety for the entered data.

• create configuration file that would include a list of databases with all the necessary information,
such as address, login, password, etc. The system has to store information that is necessary to
establish connection and then create a back-up of a database:

– name of datbase

– type of database

– server’s address and port

– login

– password

After having logged to the system, user has to provide eitherall of the above data or just part of
it using the connection’s URL that is characteristic for thedatabase engine. The system stores
this data in a form of a configuration file which is used to establish connections. The usage of
configuration file has some advantages, such as storing information about all the databases you
tend to create backups of. Thanks to this file you do not need toenter the same information
every time a back-up is created, all you have to do is select the proper database from the list.
The system also takes the possibility of editing this configuration into account.

• connect to database and create a back-up file that can be savedon the local machine

In order to begin the process user selects database and then chooses the option "Backup". Sys-
tem reads the proper data from the configuration file and triesto establish connection with the
selected database. If the connection fails, system generates message informing about the prob-
able cause of the failure, for example wrong data, unrecognized type of database inaccessible
server.

After the successful connection with database, system begins to create backup file by reading
data from database tables. Unless you choose different option, data will be stored in a form
of binary file. The back-up file can be saved on the local machine to the directory path that
has been stored in the configuration file with all other data. As the need arises, the file can be
compressed. You can also choose whether you want to be informed about the fact that backup

2



has been created. Since databases can be very large, this process can turn out to be time-
consumming, so you may decide to use the notification option,then a proper email message
will be sent after the backup is complete. The full name of thebackup file will be as follows:
<number_base_id>_<base_name>_<date>_<format>.<extension>, where:

– number_base_id - base’s number taken from the file that contains the list of databases

– base_name - the name (”title”) of the base with slight changes (e.g. "_" substituted for
space so the name can be used as a file name)

– date - backup’s creation date in ddmmyyyyhhmm format

– format - e.g. ”binary”

– extension - zip or gz

• to reconstruct databases by means of the backup file wheneverit is necessary

The second main function of the module is the reconstructionof a database by means of a
backup file. You can select the database that needs to be dumped.

The back-up file is a common SQL script and therefore reconstruction of databases does not
cause problems. Provided that the script is coherent, the dump process comes down to deleting
all the tables and restoring the data from the script.

To obtain that goal, administrator chooses the option "Restore" and enters the name of the
proper back-up file.

• log off the system

3



5 User’s web interface

JDBDump system is accessed through a WWW interface. As the old saying goes, the picture is worth
a thousand words. That’s why we want to present the interfaceby means of the following screenshots:

Figure 1: Logging to the system

4



Figure 2: The list of databases

5



Figure 3: Addning database

6



Figure 4: Creating back-up

7



Figure 5: Database dumping

8



6 Possible problems with implementation and decisions

• saved data format

In order to make the reconstruction of a database possible, we are going to use our own binary
format. However it is not the only option. We have decided to use highly flexible approach and
let our system handle other data formats when an appropriateplugin is added. When the proper
plugin is loaded, the system will be able to create the image of a database in a form of a text
file as standard SQL commands.

• file compression (optional)

Databases tend to store huge amount of data, lots of megabytes let’s say. As a result, the output
back-up file will be probably quite large, regardless of the data format chosen by the user.
Downloading such large files is very uncomfortable, especially when your internet connection
is not very fast. If you consider the content of a back-up, it is easy to notice that it mostly
contains repeatable strings that make it perfect to compress. Java makes files compression
very easy. Since the compression functions are available through the standard java package
java.util.zip you do not need any external libraries. Thereare two compression alghoritms: one
uses ZIP format, the other - GZIP. To make the behaviour of thesystem more flexible, we have
decided to let the user chose which of these methods he prefers. User can also reject this offer
and create an uncompressed file if its size is not too big. Distinguishing between zip and gzip
formats has been caused by different preferences of Windowsand linux administrators: those
working under Windows would probably prefer *.zip file whereas those working under linux
would probably choose *.gz.

• protection of back-up file and connection against the unauthorized access - data encryption

The output file will be optionally encrypted. However the easiest way to obtain safety will be
the usage of the system in conjunction with the ssl tunnel. This method is highly recommended.

• selection of DBMS our application works with

Database servers use many different relational database management systems. Although all of
them implement common SQL standard, there are some slight differences among the imple-
mentation of some details and the possibilities each one provides, for example the most popular
database management MySQL had not been able to work with views, storage procedures and
triggers till last October. Therefore, one cannot write oneuniversal module that would down-
load data from all database types. We can of course restrict to some ranges of elements common
for all databases, but this approach would result in data incompleteness and make such dump
completely useless. We can also choose just a few database types, we plan to work with and
then make an individual approch towards each of them. We havedecided to create a part of
the system responsible for downloading data so as to minimalize the implementation time and
include as many datatypes as possible. To achieve that point, a special group of classes will be
used:

9



– one main class, which will implement all possible functionsin the most general way

– several inherited classes that will make some queries in a way suitable for a given database
type, for example GeneralConnection class and MysqlConnection, Postgresqlconnection
subclasses

Owing to this solution, functions identical for all databases can be implemented just once in
the main class, whereas all other specific functions can be implemented in subclasses. User can
also make advantage of this main class when he wants to receive a backup of a database our
system does not support. However we can not guarantee the success of such an operation.

In order to give users the possibility to expand the number ofsystem’s database types, we are
going to make the system create the list of classes that deal with databases dynamically by
searching through the appropriate package to find classes which inherit from the main connec-
tion class. As a result, you will not need to modify original *.jar files. All you need to do is
provide your own jar package with your own classes. The system should detect them.

• version of java: 1.5, because it provides many additions which make coding more efficient and
comfortable (like generics and enhanced for loop („foreach” loop))

• the use of JNDI to connect with databases

JNDI takes care of database connections, the application connects to databases by taking a
DataSource from JNDI

• the order of actions during system reconstruction - avoidance of conflicts

At the beginning system creates the structure of tables, then fills the tables with data, and in the
last step it adds constraints.

• limited JDBC capabilities

In order to recognize tables’ names in a database we are goingto use so called metadata
(DatabaseMetaData class).

10



7 Diagrams

This documentation involves the following diagrams: classdiagram, use-case diagram and sequence
diagrams. To achieve better legibility, they have been placed in the supplement to this document.

11



8 Design patterns used in the project

8.1 Singleton

Singleton means that you want one and only one instance of an object within one program. It is used
when creating more than one instance of a given class is inappropriate.

List of classes that implement this pattern:

• Configuration - the class that keeps the configuration, we need only one such object

• DatabaseConnectionFactory - the class that produces connection with the given type of datatype
on request.

8.2 MVC - Model-View-Controller

One of the first patterns that were described [Krasner and Proper, 1988], the idea of this pattern is to
seperate user’s interface from data model. Struts plays this role in our project.

8.3 Factory

A simple class that returns an instance of one of several possible classes depending on the data pro-
vided to it. This pattern is implemented by DatabaseConnectionFactory - a class that produces con-
nection with the given type of database.

8.4 Builder

A Builder is an object which assembles a number of other objects (such as GUI widgets) in a way
determined by the data provided to it, to form one bigger object (such as a panel or a window in
GUI). In our project, we can say that the DatabaseConnectionclass is a Builder, because it builds a
Dump object out of many objects like Table or Column, in various ways depending on the type of the
database it connects to.

8.5 Façade

The idea of Façade is to hide the complex part of a system or a framework and make it easier to
use. In our case this means hiding the steps of creating and reconstructing a database in methods like
dump() or restore() in DatabaseConnector class. Other classes e.g. those handling the GUI don’t have

12



to handle the dump objects or database connection manually (they don’t have to access JDBC classes
directly at all).

8.6 Observer

Observer implements an interface with methods to notify itself about some activities. We use observer
pattern to notify administrator when backup is ready.

8.7 Proxy

Proxy is an object that act as an object that is being downloaded over network for a long time. Proxy
supplies information about this object at once. We will use proxy pattern while dump is being done,
because this will be usually very long operation.

8.8 Strategy

The Strategy pattern is used when we want to be able to do the same action in a few slightly different
ways, like save a file using one of several formats or calculate a value using various algorithms. In
Jdbdump, a strategy is used to select the preferred format ofthe dump file and the preferred compres-
sion algorithm (Gzip, Zip or none).

8.9 Template

Template is basically what an abstract class in Java is for - to define a method in a parent class, but
leave it for deriving classes to implement them fully. In ourproject this pattern is present in the
hierarchy of DatabaseConnector and other specific Connectors.

9 Technologies used

9.1 sourceforge.net

We have decided to run our project on sourceforge.net. This service gives you such facilities as www
account, mailing list, cvs account or bug reporting system.Sourceforge is famous for thousands of
great projects created by people from all over the world. We hope our project will join those that
turned out to be successful. Our project’s name on sourceforge is jdbdump.

13



9.2 Maven

We have used Maven to generate the structure of source, testsand documentation directories and to
generate our project’s website. The address of this websiteis:

http://jdbdump.sourceforge.net

9.3 CVS

We have also benefited from CVS that is available on sourceforge. The current state of the repository
can be seen here:

http://cvs.sourceforge.net/viewcvs.py/jdbdump/

9.4 UML tools

We have used two tools to make our diagrams:

• Poseidon - it works on different platforms (Java code), but on the other hand uses lots of mem-
ory. By means of Poseidon we have created class and use-case diagrams. Unfortunately, the
program has not been able to save our sequence diagrams, so wehad to find another tool.

http://gentleware.com/

• Enterprise Architect - a very fast tool that works with windows and linux Wine emulator. By
means of EA we have created sequence diagrams.

http://www.sparxsystems.com.au/

14



10 Requirements

10.1 Functional requirements

1. All interaction with the system is done through a web interface.

2. System grants the user access to the system if a correct login and password is entered.

3. On the „database list” page, system presents a list of all configured databases.

4. The list of databases, as well as the user’s login, password and other data, are read from a
configuration file.

5. User can add a new database to the list.

6. User can select a database engine from a list of all available connectors while adding a new
database.

7. User can edit data of a previously entered database.

8. User can remove a database from the list.

9. User can order the system to do a backup of a database selected from the list of all configured
databases.

10. User may specify the format of the backup file and used compression method.

11. The system downloads the entire database structure and data and stores it in a file of the selected
type in a designated directory on the server.

12. A notification e-mail is sent to the user when the backup file is ready for downloading, if the
user requests notification earlier.

13. User can view a list of all backup files stored on the server; files can be downloaded or deleted
from the list.

14. User can order the system to restore a selected database from a backup file, either stored on the
server, or uploaded from a local computer.

15. The system recreates the database using the supplied file.

16. A notification e-mail is sent to the user when the databaseis fully restored, if the user requests
notification earlier.

17. The system allows the user to change their e-mail addressused for notification.

15



18. The system allows the user to change their password.

19. The system allows the user to change the path of the directory on the server, in which backup
files are stored.

20. System’s functionality may be extended later by providing additional custom connector classes
for new database engines.

10.2 Security requirements

1. System denies access if login or password doesn’t match.

2. System properly closes session after user’s logout, so that he’s not logged in anymore

3. Configuration file is not available via www to other users

4. Dump files are not available directly via url

5. System provides secure authentication

10.3 User interface requirements

1. Interface provides capability to log into the system onlyusers with permissions to make backup
copy

2. Interface informs user about unsuccessful login attempt

3. Interface lists databases available to dump

4. Interface provides capability to add database to list by providing defined set of parameters

5. Interface enables user to start backup process

6. User interface shows time of backup for every dump file

7. Interface lists available dump files

8. User interface allows deleting dump files

9. Interface enables user to start restore process

10. Administrator is allowed to specify system well known settings

11. Interface provides capability to log out from the systemwhen user is logged in

16



12. System lists available types of databases to choose fromin combobox

13. System allows editing information about availables databases

14. Interface allows removing databases from the list

15. Interface lists available types of output files to choosefrom in combobox

16. Interface lists available modes of compression to choose from in combobox

17. Interface provides capability to upload local dump of database to restore from

18. Interface allows user changing password in a secure way

19. User interface shows warning information in case of making a backup copy and in case of
restoring a dump

20. Interface shows a logo on top of the page

21. Interface shows copyright information on the bottom of the page

10.4 Implementation requirements

1. Project uses CVS system for distributed development.

2. Project is maintained using Maven and its structure is compatible with the tool.

3. Eclipse is used by project developers.

4. FindBugs eclipse plugin (http://findbugs.sourceforge.net/) is used to detect possible developers’
mistakes like null problems, open streams, etc.

5. Checkstyle software (http://checkstyle.sourceforge.net/) is used to keep one style of coding
amongst all the developers.

11 Testing

11.1 Approach

Testing is the next very important part of software development. That is why, we decided to invest
time and:

• brainstorm what to test (this has been done on a piece of paper)

17



• divide tests into categories

• write a priority list of tests in each category and describe them for future implementation

• implement the most important ones

There are bottom-up and top-down approaches. Bottom-up is when the application is tested from
the very tiny pieces of software, so the tests are written as simple bricks, and if they are passed, it
implicates that the whole application works. Top-down is different - here we perform tests of the final
product and if they are not passed, we write more detailed tests.

11.2 Test categories

11.2.1 JUnit testing

To make our product more reliable, and to decrease the debugging cost during development we de-
cided to make use of JUnit framework. JUnit allows developerto describe simple tests that have to be
passed by stable version of software.
These tests are similar to the ones that every developer makes in his code during debugging, but what
makes JUnit a very useful and time-saving tool is that once tests are described they can be repeated
automatically after every change to the code without any effort from the developer. This is the most
important thing about JUnit tests, and because it helps to discover bugs almost at the time of their
creation - this is the time-saving power of JUnit.

11.2.2 Dbunit testing

DbUnit is a useful and powerful tool for simplifying unit testing of database operations. It extends
JUnit framework, that was described in the previous point. With DbUnit, a database can be seeded
with a desired data set before a test; moreover, at the completion of the test, the database can be placed
back into its pre-test state. DbUnit has a few extremely useful features for unit testing of database
operations, for instance:

– a very simple XML-based mechanism for loading test data

– a framework which simplifies operations for each stage in the the life cycle of individual
database tests

– an equally simple mechanism for exporting existing test data into the XML format for subse-
quent use in automated tests

– methods for comparing data, between flat files, queries and database tables

18



11.2.3 HTTPUnit and/or HTMLUnit testing

Because our application is web-based, the natural way to test it’s behaviour is to emulate browser.
There are two interesting test suits, that we decide to use - HttpUnit and HtmlUnit.
HttpUnit emulates the relevant portions of browser behavior, including form submission, JavaScript,
basic http authentication, cookies and automatic page redirection, and allows Java test code to ex-
amine returned pages either as text, an XML DOM, or containers of forms, tables, and links. When
combined with a framework such as JUnit, it is fairly easy to write tests that very quickly verify the
functioning of a web site.
HtmlUnit is a java unit testing framework for testing web based applications. It is similar in concept
to httpunit but is very different in implementation. HttpUnit models the http protocol so you deal with
request and response objects. HtmlUnit on the other hand, models the returned document so that you
deal with pages and forms and tables.
We will implement some tests using HtmlUnit and some using HttpUnit because different approach
in implementation of the two may make a difference in test results.

11.2.4 Manual testing

Generally manual testing is no testing, however there are some cases when it is just easier to check
once before project release if anything unexpected happens.

11.3 Test scenarios

11.3.1 JUnit tests scenarios

The list of classes that may be tested with JUnit tests:

1. Configuration

2. DatabaseConnector

3. DatabaseConnectorFactory

4. MysqlConnector

5. PostgresqlConnector

6. Dump

7. DumpFileManager

8. Restore

19



11.3.2 Dbunit testing scenarios

The purpose of this test is to check the state of the database before and after the backup. The test is
performed using external tool (Dbunit).
Input data: database image before and after backup
Output: true if images are identical

1. Export a database to a xml file (Dbunit)

2. Dump the same database to our format type file

3. Restore database by means of the file created by dump method

4. Export the restored database to a new xml file (Dbunit)

5. Compare those two xml files (Dbunit) and make sure they are identical

11.3.3 HTTPUnit and/or HTMLUnit testing scenarios

1. Authentication test [AuthenticationTest]

The purpose of this test it to test logging facilities and findpossible abuses of this part of the
system.
Input data: „login” page, „settings” page
Output: fail if expected behaviour differs

(a) Login to the system with username and password

(b) Go to „Settings” page

(c) Fill in the change password form with random data (and remember it)

(d) Update settings

(e) Logout

(f) Try to log in with the old password

(g) Log in to the system with remembered username and password

(h) Go to „Settings” page

(i) Fill in the change password form with original data

(j) Update settings

(k) Logout

(l) Try to log with the previus password

20



(m) Log in with current password

2. Database list test [DatabaseListTest]

The purpose of this test it to test whether the same databasesare shown in „database list” page
and stored in the configuration file and find possible abuses ofthis part of the system.
Input data: „database list” page, configuration file
Output: fail if expected behaviour differs

(a) Read „Database list” page on „Database list” page

(b) Read configuration file on the server

(c) Check whether they match

3. Add database test [DatabaseAddTest]

The purpose of this test it to test it adding databases to the system works properly and find
possible abuses of this part of the system.
Input data: „database list” page, „add database” page
Output: fail if expected behaviour differs

(a) Read and remember entries on „Database list” page

(b) Fill in the form on „Add database” page

(c) Submit the form

(d) Read „Database list” page again

(e) Modify data

(f) Submit the form

(g) Read „Database list” page again

(h) Generate random database entries

(i) Add generated database

(j) Remove generated database

(k) Read „Database list” page again

(l) Expect newly generated page to contain just added entry

4. Download file from the server test [TrivialDownloadTest]

The purpose of this test it to test if backuped up database is ready to download and find possible
abuses of this part of the system.
Input data: „backup list” page
Output: fail if expected behaviour differs

21



(a) Select iteratively database from the database list on the „Backup list”

(b) Start downloading currently selected database

(c) If started receiving data, the this parto of the test is passed and download stopped

(d) Logout from the system

(e) Try to abuse the system and download images using URL

(f) Try to download configuration file

(g) If download test is passed and after logout there is impossible to download data, test is
passed

5. List plugins test [ListPluginsTest]

The purpose of this test it to test if listed plugins match entries in the configuration file and find
possible abuses of this part of the system.
Input data: „backup” page, configuration file
Output: fail if expected behaviour differs

(a) Read database engine list on „Backup” page

(b) Read plugin configuration file on the server

(c) Check whether they match

6. Backup list test [BackupListTest]

The purpose of this test it to test whether backups shown on the page match directory contents
and find possible abuses of this part of the system.
Input data: „backup list” page, contents of the backup directory
Output: fail if expected behaviour differs

(a) Read backup list on the „Backup list” page

(b) Read backups in the server’s backup directory

(c) Check whether they match

7. List backup database test [ListBackupDatabaseTest]

The purpose of this test it to test if system properly lists databases stored in the system and find
possible abuses of this part of the system.
Input data: „database list” page, „backup” page
Output: fail if expected behaviour differs

(a) Read database list on the „Database list” page

(b) Read database selectlist on the „Backup” page

22



(c) Check whether they match

8. Output file format test [OutputFileFormatTest]

The purpose of this test it to test if created output file format is really like one selected and find
possible abuses of this part of the system.
Input data: „backup” page, configuration file
Output: fail if expected behaviour differs

(a) Read output file format selectlist on the „Backup” page

(b) Read configuration file for output file formats

(c) Check whether they match

9. Compression test [CompressionTest]

The purpose of this test it to test if compression of the database works and find possible abuses
of this part of the system.
Input data: „backup” page, configuration file
Output: fail if expected behaviour differs

(a) Select random compression mode from the selectlist on the „Backup” page and remember
it

(b) Backup database

(c) Use file properties to determine whether the output really is the selected format

10. Delete local backup test [DeleteLocalBackupTest]

The purpose of this test it to test if deletation of the local backup works and find possible abuses
of this part of the system.
Input data: „backup list”
Output: fail if expected behaviour differs

(a) Select random database file from the list on the „Backup list” page and remember it

(b) Delete it

(c) Re-read „Backup list” page and check whether the deleteddatabase disappeared

11. Restore options test [RestoreOptionsTest]

The purpose of this test it to test restore facilities and findpossible abuses of this part of the
system.
Input data: „restore” page
Output: fail if expected behaviour differs

23



(a) Read database list and file format from backup selectlists

(b) Do the same with restore selectlists

(c) Check whether they match

12. Settings test [SettingsTest]

The purpose of this test it to test settings and find possible abuses of this part of the system.
Input data: „settings” page
Output: fail if expected behaviour differs

(a) Read backup directory path from the „Settings” page

(b) Read the same but from configuration file on the server

(c) Check whether they match

11.3.4 Manual testing scenarios

1. Backup notification test

The purpose of this test it to check whether notification mechanisms work properly.
Input data: „backup database” page
Output: fail if expected behaviour differs

(a) Type in correctly an email address

(b) Check „notify me when backup is ready” box

(c) Click „backup database”

(d) Check for an email

(e) Check whether backup is really ready to download

2. Restore notification test

The purpose of this test it to check whether notification mechanisms work properly.

Input: „restore database” page
Output: fail the test if expected behaviour differs

(a) Type in correctly an email address

(b) Check „notify me when the database is fully restored” box

(c) Click „restore database”

(d) Check for an email

24



(e) Check whether database is really restored

3. Naughty test

The purpose of this test is to check how the system reacts in some unlikely and pesimistic con-
ditions:

(a) User deletes a database, then presses reload in the browser, which in effect sends the same
delete request once again.

(b) User orders the system to dump or restore a database, thenreturns to the menu and restores
the same database again. As a result two processes would be inserting the same data at
the same time or one would be inserting the new data whereas the other would be reading
the mixture of new and old data.

(c) User has got a database, let’s say MS SQL. He inserts the MssqlConnector plugin to the
right directory, adds the database to the configuration file and performs the dump opera-
tion. One day later a nasty admin removes this plugin. The user comes back, chooses the
dump and wants to perform "restore" operation. Of course this operation cannot succeed,
because there is no proper connector. The same situation takes place when user wants to
create another dump from this database.

(d) User provides a wrong path to save dump files, for example „C:́’ would be wrong on a
Unix server; or a user provides the name of the directory he cannot access, for example
„/root”. Then he tries to dump a database.

(e) User sends a dump file, which is really not a dump file but forexample his favourite music
video (he may have click a wrong file in the open file dialog).

(f) User downloads a dump file from database #1, which is a PostgreSQL database, then tries
to put it into database #2 which runs MySQL 4. No matter how hard he tries, he cannot
succeed (because of problems with e.g. procedures, triggers, views...)

(g) User downloads a dump file in a binary/ZIP format, and thentries to insert it to the
database as a plain text or GZIP file.

25



11.4 Requirements and scenarios table

Functional requirement Coverint scenario Testing technique
(default from HTTP/HTML unit tests)

1 all HTTP and HTML unit tests (1-12) HTTP Unit / HTML Unit
2 1 HTTP Unit / HTML Unit
3 2 HTTP Unit / HTML Unit
4 2 HTTP Unit / HTML Unit
5 3 HTTP Unit / HTML Unit
6 5 HTTP Unit / HTML Unit
7 3 HTTP Unit / HTML Unit
8 10 HTTP Unit / HTML Unit
9 4, 6 HTTP Unit / HTML Unit
10 8, 9 HTTP Unit / HTML Unit
11 4, Dbunit tests HTTP Unit / HTML Unit, Dbunit
12 1 Manual
13 6, 10 HTTP Unit / HTML Unit
14 11 HTTP Unit / HTML Unit
15 Dbunit tests Dbunit
16 2 Manual
17 12 HTTP Unit / HTML Unit
18 12, 1 HTTP Unit / HTML Unit
19 12 HTTP Unit / HTML Unit
20 5 HTTP Unit / HTML Unit

Security requirement Coverint scenario Testing technique
1 1 HTTP Unit / HTML Unit
2 1 HTTP Unit / HTML Unit
3 4 HTTP Unit / HTML Unit
4 4 HTTP Unit / HTML Unit
5 1 HTTP Unit / HTML Unit

26



User interface requirementCoverint scenario Testing technique
1 1, 6 HTTP Unit / HTML Unit
2 1 HTTP Unit / HTML Unit
3 2 HTTP Unit / HTML Unit
4 1, 2 HTTP Unit / HTML Unit
5 3 HTTP Unit / HTML Unit
6 5 HTTP Unit / HTML Unit
7 6 HTTP Unit / HTML Unit
8 10 HTTP Unit / HTML Unit
9 11 HTTP Unit / HTML Unit
10 12 HTTP Unit / HTML Unit
11 1 HTTP Unit / HTML Unit
12 5 Manual
13 2, 3 HTTP Unit / HTML Unit
14 2, 3 HTTP Unit / HTML Unit
15 8 HTTP Unit / HTML Unit
16 9 HTTP Unit / HTML Unit
17 11 HTTP Unit / HTML Unit
18 1 HTTP Unit / HTML Unit
19 - -
20 - -
21 - -

11.5 Implementation

We decided to implement only the most important tests at thisstage of the development. The chosen
tests are as follows:

11.5.1 JUnit tests

1. ConfigurationTest.testAddDatabase() - a JUnit test thattests the use of Configuration.addDatabase()
method. It takes the list of defined connections with Configuration.getConnections(), adds an
entry with Configuration.addDatabase(), gets the list oncemore, and compare it with the previ-
ous one.

2. ConfigurationTest.testRemoveDatabase() - a JUnit test for Configuration.removeDatabase() method.
It works very simillar to the Configuration.testAddDatabase() test.

3. ConfigurationTest.testGetInstance() - a JUnit test for checking if the Singleton design pattern is
implemented as it should be.

27



4. ConfigurationTest.testIO() - a JUnit test for checking ifsave/load operations (performed by
Configuration.saveData(), and Configuration.restoreData() respectively) on configuration file
works good. The test consists of sequences of save, modify, load, and compare operations on
the configuration data.

5. AuthenticationTest.testWrongPassword() - a HTTPUnit test that tries to log into the system
using wrong password

6. AuthenticationTest.testEmptyPassword() - a HTTPUnit test that tries to log into the system
without specifying any password

7. AuthenticationTest.testMessingWithPasswords() - a HTTPUnit test that tries to log into the
system, change current password using Settings interface,tries to log in with the old password,
logs in with the new password, change password back to the original one, and tries loging in
with old and current password once more.

8. DatabaseConnectorFactoryTest.testGetInstance() - JUnit tests whether the Singleton desing pat-
tern works properly, that is one and only one instane of DatabaseConnectorFactory class exists

9. DatabaseConnectorFactoryTest.testCreateConnector()- JUnit tests whether the Factory design
pattern works properly; that means createConnector methodproduces the proper DatabaseCon-
nector on the basic of user’s needs (e.g. MysqlConnector, Postgresql connector)

10. DatabaseConnectorFactory.listPlugins() - Junit testwhether the listPlugins method return classes
that extend DataBaseConnector

11. MysqlconnectorTest.testConnect() - JUnit tests whether the Connection object has been created
and checks if it is not null type

12. MysqlconnectorTest.testDisconnect() - JUnit tests whether the connection has been closed

13. MysqlconnectorTest.testCreateURL() - JUnit tests whether the connection URL has been prop-
erly created

11.5.2 Dbunit tests

Dbunit test has been implemented in the method MysqlconnectorTest.testDumpRestore(), which ful-
fills the scenario.

11.5.3 HTTPUnit and/or HTMLUnit tests

1. Add database test has been implemented using HTTP unit, which probably is better to this
purposes.

28



• AddDatabaseTest.readList() - reads database list and remembers it

• AddDatabaseTest.addDatabase() - randomly generates database details and adds it to the
system

• AddDatabaseTest.check() - check whether database was really added

2. Trivial download test has been implemented using HTTP unit, which probably is better to this
purposes.

• TrivialDownloadTest.readNext() - reads next database from database backup list

• TrivialDownloadTest.download() - starts downloading currently selected database

3. Authentication test has been implemented using HTTP unit, because it uses mainly http requests
to deal with tested forms and actions. The invoked methods are:

• AuthenticationTest.readConfig() - reads generic usernameand password from the config
file, remembers it and sets active

• AuthenticationTest.login() - logs in with active usernameand password

• AuthenticationTest.changePassword() - changes passwordof the user to randomly gener-
ated one

• AuthenticationTest.logout() - logs out from the system

29



12 Implementation

12.1 Requirements

To launch the application (besides a piece of hardware), thefollowing external applications are
needed:

• Java version 1.5 (JDK)

• WWW server that serves jsp pages - we are using Apache Tomcat 5and we recommend it to
use with our application, but other tools are welcome (please let us know if you experience any
trouble or success running jdbdump on other platforms)

12.2 Safe launching and possible security risks and data loss

There are few security risks when using jdbdump. The following list describes them and suggests a
solution:

• Not encrypted username and password when logging into the system.
We strongly suggest using an SSL enabled web server in order not to be sniffed by third party’s
spy software.

• Other users of the system that jdbdump is being launched on may read jdbdump files.
In this situation we strongly advise to check whether the files created by jdbdump (e.g. backups)
are readable only by „tomcat” user (in case you are using Apache Tomcat server).

• Not encrypted database image files transferred from the server to the user’s computer.
This might be harder to sniff, because transfered images arestored in a serialized and zipped /
gzipped format, but there is still a possibility that someone nasty will log the whole image and
then try to find some passwords. That is why we also recommend to download the image file
via an SSL channel, which is however pretty slow. In the future versions secure ftp transfers
should be implemented. The other solution is to encrypt the image file using e.g. a password
algorithm and then use that password to retrieve image.

• Database images are stored temporarily in the server’s working directory.
In case the server is tomcat, on every reload or deployment ofthe project probably all backed
up data is lost. It means that users need to download the imagefile before someone does one
of the mentioned things. This is normally not a problem, however we suggest to download the
image file just after it is being done.
The best solution would be to create another implementationof DumpFileManager, which
would upload files to a remote database as blob objects instead of saving them in the filesystem.
Then they would be protected from malicious sysadmins.

30



12.3 Performance testing

There are two approaches to performance testing, either to use dedicated software or to write own
tests.

We have decided to measure the time the console program for dumping mysql databases (mysqldump)
consumes and compare it to the dump of the same database set, but created by jdbdump.

Here are the results of mysqldump and our Dump comparison:

SIZE MYSQLDUMP TIME JDBDUMP DUMP TIME
4.3MB 1,53 s 6.20 s
7.2 MB 2.5 s 12.6 s
10.3 MB 4.05 s 21.9
15.2 MB 6.7 s 51.75 s
21.7 MB 8.5 s 90.3 s

As we had expected mysqldump turned out to be faster. That is caused by many factors, for example
that it is a natively compiled program and Jdbdump runs on a virtual machine, it handles MySQL
databases specifically and Jdbdump tries to be universal, and Jdbdump uses JDBC calls which add
another layer of complexity.
Here is a diagram that presents these dependencies:

12.4 Problems encountered during performace test

Performance tests are also a good way to discover some problems or errors that may result from tech-
nologies’ missing features. We have created a very simple mysql database and inserted 100000000
(100 million) rows into one of its tables. However the dumping process did not succeed. Instead of
the backup file we have received the following error: "java.lang.OutOfMemoryError". That shouldn’t
have happened, because Jdbdump copies tables directly to a file record after record, not loading entire
tables into memory.
It turned out that the guilty one was the Mysql server and JDBCdriver. In our java application we
have used setFetchSize() method to make the program download data piece by piece, that means if
you write setFetchSize(100) and want to download data from atable consisting of 1000000 rows,
it should download only the first 100 rows at the beginning, and then the next 100 rows when they
are accessed, and so on. However, to our surprise it turned out that this feature is available only in
MySQL 5.0. So we had to implement it ourselves in our code.

31



Figure 6: The comparison between mysqldump and jdbdump

12.5 Code and application environment optimization

Sometimes it is more convenient or more efficient to use a Prepared Statement for sending SQL
statements to the database. In jdbdump we use Prepared Statements because we deal with many
tables and data. The main feature of a Prepared Statement is that it is given an SQL statement when
it is created. The advantage to this is that in most cases, this SQL statement will be sent to the DBMS
right away, where it will be compiled. As a result, the Prepared Statement object contains not just an
SQL statement, but an SQL statement that has been precompiled. This means that when the prepared
statement is executed, the DBMS can just run the prepared statement’s SQL statement without having
to compile it first. This speeds up the dump / restore process.
Currently we use Prepared Statement in the process of uploading records of data from one table during
the execution of DatabaseConnector.restore(). An insert statement is prepared each time a new table
has to be filled with data, and then the same statement is executed once for each record of data.

32



12.6 Safe configuration and its impact on performance testing

Generally speaking, the more secure the application is, theslower it is. This (considering jdbdump)
might be caused by:

• Slower data transfer because of the use of SSL protocol (thismight be actually quite fast if
hardware SSL accelerators are used, but who besides very bigcompanies can afford those?)

• If all the security issues from the „wishlist” were implemented, there might be a noticable
slowdown in performance tests due to encrypting of image files

• If we use a remote database or FTP server instead of the local filesystem to store backups
and/or configuration, it’s obvious that it will take more time to upload and download them than
it would take to just save them and load them back.

12.7 Installation and configuration

This web application is provided as a WAR file so it is simple todeploy to a server, but due to J2EE
authentication used in project some preparations must be done to properly start the application. Also
some properties must be set to suit user requirements.

• For MySQL authentication:

1. Create a MySQL database named ’authority’. You can use a provided script called ’realm.sql’.
You should notice that allowed users are those from group ’systemadmin’

2. Specify allowed users adding them into the database table

3. If you use mysql based authentication, then next thing is to copy mysql-connector-java.jar
into server/lib directory placed in tomcat directory (TOMCAT_HOME)

4. Enable authentication based on created database

• Standard authentication:

1. Add role „systemadmin” into the tomcat-users.xml file

2. Add a username and password (with „systemadmin” role) to the tomcat-users.xml file

3. Edit properties files to suit your needs (remember to create the backup directory and set
privileges that Tomcat server can use this directory to store backups (default is /var/back-
ups)

4. You may sometimes need to copy app.properties file into another location (it depends on
your’s Tomcat configuration)

5. After that you can deploy the application to the tomcat server using for example manager
panel

33



12.8 User’s guide

In order to use Jdbdump application you need to decide whether you prefer web or console applica-
tion. Both of these have some advantages: web interface is user friendly, self sescriptive and easy to
use. However some people are used to traditional console commands and therefore we have decided
to satisfy their needs and provide a simple console tool.
If you have not used neither of these Jdbdump interfaces before, then look through the following
guides to obtain the necessary knowledge.

12.8.1 Web interface

Before making use of any of Jdbdump functionality you have tolog to the system. If logging is
successful you will find a menu consisting of the following operations:

• Database list

• Add database

• Backup

• Backup list

• Restore

• Settings

• Logout

If your database list is empty you have to add a new database that needs to be backuped. Just click
"Add database" and provide all the necessary information (Database title, Server name or IP, server
port - optional, database engine, database name, login and password), for example:

When databases are added to the configuration file, you shouldbe able to list them by clicking
"Database list". This will display database names and next to each name you will notice "Edit"
and "Delete" options. "Edit" enables you to change the information you have provided in the Add
database panel, wheras "Delete" removes all the configuration data concerning the given database, for
example:

Now let’s get to the most important functionality of our JDBCdatabase archiver. Suppose you want to
backup a database "IOSR Database", which you have already added to the list of avaiable databases.
First of all, choose "backup" option in the menu and then find "IOSR Database" on the list. Choose

34



Figure 7: Add database

the compression mode. You can prefer to get Zip or Gzip files. Since the backup process may take
some time, you can also select that you want to be informed about the end of the backup. Then accept
your choices by clicking "Backup database",for example:

When the backup file is ready you should download it to your local machine - "Backup List" panel.
If you have the backup files on your machine you can restore your database with data present in one
of those files. This operation is very simililar to "Backup",however this time you have to choose the
file, by means of which you want to reconstruct your database and in the same way as before choose
database name, file format and compression mode. The restoring process may be time consuming as
well so it is recommended to click notifying option.
It is also very important to get familiar with the Settings panel, where you can keep you email adress,
and point the directory where you want all you backup files stored, for example:

35



Figure 8: List databases

12.8.2 Console tool

The console tools works in a slightly different way and involves some more configuration work. Here
are the basic steps that will allow you to work with your database.

Firstly, create a file with configuration data, let’s call it "mydatabase.conf". This is a java property file
and it should look like this:

connector=net.sourceforge.jdbdump.connect.connectors.MysqlConnector
url=jdbc:mysql://localhost/cpe
login=mylogin
password=...
compression=gzip

If you have it you are almost ready. Open you terminal and write down the following command:

36



Figure 9: Backup your database

~$ java -classpath <path_to_jdbdump> \
net.sourceforge.jdbdump.connect.TestDump dump \
testdump.gz mydatabase.conf

The program takes three parameters:

• tha action -"dump", "restore" or "print"

• the name of the backup file

• the name of the configuration file

12.9 Changes in realisation

During the application development we decided to change following things:

37



Figure 10: Settings panel

• GeneralConnection has been renamed to DatabaseConnector,*Connection classes to *Connec-
tor, and we decided to make DatabaseConnector an abstract class, because there is no such thing
like universal connector which backs up any type of databaseand some of the methods simply
had to be done in derived connectors

• When we started implementing restore, it turned out that thedatabase has to be cleared of old
tables before the new ones are inserted. That involved not only "DROP TABLE" queries, but
also some "ALTER TABLE", because we learned that before the tables are removed, some
constraints have to be removed from them. That is because we can’t delete a table as long as
there is any other table that uses its fields as foreign keys. So first the constraints have to be
removed from tables, then the tables themselves, and only then new versions of tables can be
added to the database.

• To create the web interface, we decided to use Java Server Faces (MyFaces) instead of Struts.

• We decided to extend the configuration subsystem, using one abstract base class and a few
implementing classes, handling different ways of storing the configuration (for example, in
local filesystem and on a FTP server). The reason for this is that storing the configuration in
local files may not be safe, because they may get lost when the application is redeployed.

• We added a Mailer class using Sun’s JavaMail framework to send notification emails.

38



• During the development we created a TestDump class which at first was meant to test the
behavior of „engine” classes while the web GUI was not finished, and later it evolved into a
simple but powerful command line client for Jdbdump.

• The methods initializing and downloading the stream of datarecords from a table in a database
have been moved to specific connectors, because it turned outthat even these simple commands
have to be handled specifically for them (e.g. MySQL requiresthat table names are given
in apostrophes (“) if they contain some special characters,and some databases don’t support
setFetchSize() so their connectors have to do it for them.

• We added the Log4J library and replaces System.out.println() calls with Log4J methods.

• At first we couldn’t download a test MySQL database, because it threw SQLExceptions con-
cerning a date in a wrong format. We found later on the net thatit was caused by MySQL JDBC
driver’s wrong interpretation of date; MySQL server allowsstoring an empty date (0000-00-00),
but the JDBC driver throws an SQLException when it sees one. We learned that a special option
„?zeroDateTimeBehavior=convertToNull” had to be added tothe connection URL to fix that.

At the moment we did not finish implementing some parts of GUI.These are uload and download
sections and also the behaviour of a browser while the dump isbeing done. However, this is not a
problem, you just only need external file download/upload software like sftp.

12.10 Further development

There are still a lot ideas that may be implemented in the future versions of jdbdump. We are aware
of the fact, that some parts of the application are not 100% safe and handy. That is why we have
prepared a „wishlist” for further development. Here it goes:

• encrypted dump file

• possibility to automatically send dump file via SSH or SFTP toany defined location

• support other database elements such as stored procedures or triggers

• support less commonly used table data types and options which may appear in table definition

• add a few more connectors for other database engines like Oracle, MS SQL server

• use JNDI data sources to connect to databases

• add more file formats like plain text (currently, only binary/serialized file format is available)

• provide the possibility to convert one type of database intoanother

39



• protect against the special situations described earlier in the paragraph named „Naughty tests”
(see 11.3.4.3)

• test Jdbdump in environments other than Tomcat

• improve performance

40



13 Changelog

• 05.11.2005 - Expansion of problem’s description.

• 06.11.2005 - Writing down and deciding upon some implementational issues

• 07.11.2005 - User’s interface description

• 08.11.2005 - Setting up jdbdump project on sourceforge: jdbdump

• 08.11.2005 - Generating documentation in Maven: Maven

• 14.11.2005 - Creation of class diagram

• 14.11.2005 - Creation of mailing list on sourceforge

• 15.11.2005 - Creation of use-case diagram

• 15.11.2005 - Update on documentation due to the recently created class diagram

• 18.11.2005 - Creation of documentation in pdf version

• 19.11.2005 - Creation of WWW interface model

• 20.11.2005 - Topics added to documentation: description ofdesign patterns and technologies
used in the project

• 02.12.2005 - Tests descriptions and tests added

• 12.12.2005 - Additional tests added

• 04.01.2006 - Dump implementation added

• 05.01.2006 - Restore implementation added

• 06.01.2006 - Mysql support added

• 07.01.2006 - Team meeting: 3 hours of heavy disputes about current development. Decision:
dumps are stored in the local filesystem, but users are suggested to download the file images

• 07.01.2006 - Some notes on implementation added

• 08.01.2006 - A few bugs discovered

• 08.01.2006 - Security and environment notes added

• 09.01.2006 - „Wishlist” added

41



• 09.01.2006 - Team meeting: some bugs fixed, performance tests planned

• 10.01.2006 - Memory leak bug discovered in Dump, fixed

• 10.01.2006 - Performance tests performed

• 10.01.2006 - FAQ added

• 11.01.2006 - Team meeting: discussion about integrating every jdbdump module

• 11.01.2006 - Mailer implemented

• 12.01.2006 - A few changes in the documentation, e.g. description of installation and configu-
ration

• 13.01.2006 - Final maven integration, final site generations

• 13.01.2006 - Version 1.0 released :-)

42


